Aromatic Compounds

1. Which compound(s) could be prepared by reacting benzene with an acyl chloride in the presence of a halogen carrier?

- C Only 2 and 3
- D Only 1

Your	answer
roui	answei

[1]

- 2. Which one of the following reacts with ethanoic acid **and** with phenol?
 - A Aqueous potassium hydroxide
 - B Bromine
 - **C** Calcium carbonate
 - D Methanol and an acid catalyst

Your answer

3. Phenol reacts with bromine.

Which is the least likely organic product?

Your answer

[1]

4. Which chemical(s) can react with phenol?

- 1 Potassium hydroxide
- 2 Ethanoyl chloride
- 3 Nitric acid
- A 1, 2 and 3
- B Only 1 and 2
- C Only 2 and 3
- D Only 1

Your answer

- 5. Which statement(s) support(s) the delocalised model for the structure of benzene?
 - 1 All carbon–carbon bonds have the same length.
 - 2 The enthalpy change of hydrogenation of benzene is less exothermic than expected.
 - 3 Bromine reacts with benzene less readily than with cyclohexene.
 - A 1, 2 and 3
 - B Only 1 and 2
 - C Only 2 and 3
 - D Only 1

Your answer	
-------------	--

[1]

6. Which of the following could react with the compound below to form a carbon–carbon bond?

- 1 CH₃Cl and Al Cl₃
- 2 KCN in ethanol
- 3 CH₃OH and H₂SO₄
- **A** 1, 2 and 3
- B Only 1 and 2
- C Only 2 and 3
- D Only 1

Your answer

7. Benzene reacts with an organic reagent in the presence of a halogen carrier to form phenylethanone.

Which organic reagent is required?

- A CH₃CH₂OH
- B CH₃CHO
- C CH₃COC/
- D CH₃COOH

Your answer		[1]

8. Which reagent could be used to distinguish between CH_3CH_2OH and C_6H_5OH ?

- A AgNO₃(aq) in ethanol
- B CH₃COC/
- C Na₂CO₃(aq)
- D Bromine water

Your answer

9. The compound shown below can be prepared from phenol.

Which reagent(s) is/are required?

- A Concentrated NH₃
- B Dilute NH₃
- C Dilute HNO₃ and then concentrated HC//Sn
- D Dilute HNO₃ and then NaBH₄

Your answer

[1]

10. What is the number of sigma bonds in a benzene molecule?

Α	3
В	6
С	9
D	12

Your answer

[1]

11. A student adds bromine water to a solution of phenol.

What would the student see during this reaction?

- A. Bromine water goes from orange to green.
- B. Bromine water goes from orange to colourless and a white precipitate is formed.
- C. There is no reaction.
- D. Bromine water goes from orange to colourless and the solution fizzes.

Your answer

- **12.** What is the mechanism for the nitration of benzene?
 - A. Nucleophilic addition
 - B. Nucleophilic substitution
 - C. Electrophilic addition
 - D. Electrophilic substitution

Your	answer
------	--------

[1]

- **13.** Which of the following support(s) the delocalised model for benzene rather than the Kekulé model?
 - 1: Benzene is less reactive than cyclohexene
 - 2: A benzene molecule has a planar, hexagonal structure
 - **3:** The enthalpy change of hydrogenation of benzene is more exothermic than predicted from the Kekulé structure
 - A. 1, 2 and 3
 - B. Only 1 and 2
 - C. Only 2 and 3
 - D. Only 1

Your answer

[1]

14. Bromine is reacted separately with nitrobenzene and phenylamine.

Which organic products are likely to form?

	Product from nitrobenzene	Product from phenylamine
Α	2-bromonitrobenzene	2-bromophenylamine
В	2-bromonitrobenzene	3-bromophenylamine
С	3-bromonitrobenzene	2-bromophenylamine
D	3-bromonitrobenzene	3-bromophenylamine

Your answer

15. Two chemical tests are carried out on an aqueous solution of an aromatic organic compound Y.The results of the tests are shown below.

Test	Br ₂ (aq)	Na ₂ CO ₃ (aq)
Observation	decolourised	effervescence

What is the minimum number of C atoms in Y?

Your answer

[1]

END OF QUESTION PAPER

Mark scheme – Aromatic Compounds (MCQ)

Question		on	Answer/Indicative content	Marks	Guidance
1			с	1 (AO1.2)	
			Total	1	
2			A	1 (AO1.1)	
			Total	1	
3			с	1 (AO 1.2)	
			Total	1	
4			A	1 (AO 1.1)	Examiner's Comments This question proved difficult. Many candidates correctly deduced that all three chemicals would react with phenol and selected A. Some candidates did not recognise that phenol would react with HNO ³ without the need for a catalyst and selected B. Other candidates did not consider the weak acidity of phenol and selected C.
			Total	1	
5			A	1	Examiner's Comments The bonding in benzene is well known by candidates at this level and most correctly selected A as their response.
			Total	1	
6			В	1	Examiner's Comments Candidates found this question difficult, presumably as it involved reactions of different functional groups within the same compound. Many candidates identified B as the correct response. The most common incorrect responses were C and D.
			Total	1	
7			с	1	Examiner's Comments Almost all candidates identified C

				(CH₃COCI) as the reagent required for this reaction.
		Total	1	
8		D	1	
		Total	1	
9		С	1	
		Total	1	
10		D	1	
		Total	1	
11		В	1	
		Total	1	
12		D	1	
		Total	1	
13		D	1	
		Total	1	
14		С	1	
		Total	1	
15		В	1	
		Total	1	